The WHIM-like CXCR4S338X somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia.

Yang Cao, Zachary R. Hunter, Xia Liu, Lian Xu, Guang Yang, Jiaji Chen, Christopher J. Patterson, Nikolas Tsakmaklis, Sandra Kanan, Scott Rodig, Jorge J. Castillo, and Steven P. Treon. Bing Center for Waldenstrom’s Macroglobulinemia, Dana Farber Cancer Institute, and Department of Pathology, Brigham and Womens Hospital, Harvard Medical School, Boston MA, USA.

Background: Whole genome sequencing (WGS) has revealed CXCR4 mutations as the second most prevalent somatic mutations in Waldenstrom’s Macroglobulinemia, which affect 30% of WM patients. The impact of CXCR4 somatic mutations remains to be clarified in WM.

Methods: CXCR4WT and CXCR4S338X cDNAs were subcloned into plenti-IRES-GFP vector, and transduced using an optimized lentiviral based strategy into BCWM.1 and MWCL-1 WM cells. GFP positive cells were sorted and used for functional studies. CXCR4 internalization was studied by comparing CXCR4 surface expression before and after SDF-1α stimulation. The expression of phosphorylated AKT, ERK1/2, and BTK was determined by phosphoflow, and confirmed by western blot. Cell survival studies were accessed by Annexin V staining and immunoblotting using antibodies for cleaved PARP and cleaved caspase 3. Bone marrow core biopsies from WM patients whose aspirates were used to sort for CD19+ cells and Sanger sequencing for the C-terminal domain were stained for phospho-AKT and phospho-ERK before and after ibrutinib therapy.

Results: Following SDF-1α stimulation, CXCR4S338X WM cells exhibited decreased receptor internalization; enhanced and sustained AKT and ERK signaling; decreased PARP and caspase 3 cleavage; and decreased Annexin V staining versus CXCR4 wild-type (WT) cells. CXCR4S338X related signaling and survival effects were blocked by the CXCR4 inhibitor AMD3100. SDF-1α treated CXCR4S338X WM cells showed sustained AKT and ERK activation and decreased apoptotic changes versus CXCR4WT cells following ibrutinib treatment, findings which were also reversed by AMD3100. AKT or ERK antagonists restored ibrutinib-triggered apoptotic changes in SDF-1α treated CXCR4S338X WM cells demonstrating their role SDF-1α mediated ibrutinib-resistance. Enhanced bone marrow pAKT staining was also evident in CXCR4WHIM versus CXCR4WT WM patients, and remained active despite ibrutinib therapy in CXCR4WHIM patients. Lastly, CXCR4S338X WM cells showed varying levels of resistance to other WM relevant therapeutics including bendamustine, fludarabine, bortezomib and idelalisib in the presence of SDF-1α.

Conclusion: our findings show that the most common CXCR4 WHIM-like somatic mutation in WM (CXCR4S338X) confers decreased SDF-1α triggered CXCR4 receptor internalization, enhanced AKT and ERK activation, and resistance to ibrutinib triggered apoptosis in WM cells. Use of inhibitors targeting CXCR4 or AKT/ERK can restore the sensitivity of CXCR4S338X expressing WM cells to ibrutinib as well as other WM relevant agents, thereby providing a framework for the investigation of these combinations in WM.